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I. INTRODUCTION 
A digital image is a representation of a real 

image that a digital computer may store and 

manipulate as a collection of numbers. The image is 

broken into tiny sections known as pixels so that it 

may be converted into numbers (picture elements). 

Today, an image is synonymous with a digital image 

and is crucial for everyday uses including computer 

tomography, satellite television, and medical 

imaging)[1]. Different forms of sounds frequently 

adulterate the images captured by various types of 

devices and sensors. Hence To extract a reliable 

estimate of the original image from noisy states, 

image denoising is performed. mage denoising 

techniques are required to save crucial image 

elements like edges and texture while removing as 

much random additive noise as possible [2]. 

 

Different types of noise can contaminate 

digital photos. The data of interest may be 

compromised as a result of interference, issues with 

the data gathering procedure, and defective devices 

utilized in image processing. Additionally, 

transmission failures and compression can also 

generate noise[1]. Image denoising is the process of 

taking away noise from an image so that the original 

image can be seen. Denoised photos may necessarily 

lose some information since noise, edge, and texture 

are high-frequency components that are difficult to 

differentiate during the denoising process. 

Several methods have recently tried to 

reconstruct noisy pixels using data from the overall 

image and have improved denoising performance. 

Block-matching 3D filtering (BM3D)[3],FFDNet [4], 

Deep Convolutional Neural Network [5], contourlet 

transform-based anisotropic diffusion 

filtering[6],Integer and Fractional-Order Total 

Variation[7], Threshold, Wavelet Transform and 

Genetic Algorithm[8], principal component analysis 

with learned patch groups[9],Noise-Driven 

Anisotropic Diffusion Filtering[10] and their 

extensions are a few examples of typical algorithms 

used for denoising images. They are unable to 

effectively reduce salt and pepper noise, though. by 

incorporating Partial Differential Equations (PDE) we 

can denoise images for Image Restoration, 

Segmentation, Tracking, Estimation of the Optical 

Flow, and Registration.  

 

In this study, we define and solve different 

Partial Differential Equations (PDE) while applying 

results using Gaussian smoothing, Isotropic linear 

diffusion smoothing, and Non-linear Isotropic 

diffusion. The result obtained from the comparative 

analysis is used to propose a good image denoising 

algorithm. 

 

This paper is organized as follows:  

a. Introduction  

b. Literature review 

c. existing methods for image denoising 

d. Methods involved: the mathematical and 

implementation details 

e.  Discussion of results  

f. Target audience - which research community is 

your work most relevant 

 

II. LITERATURE REVIEW 
A. Image Denoising problem 

Image denoising can be mathematically expressed as: 

x ny  

This represents a classic inverse problem. In 

equation (1), the unknown clean image is represented 

by x, the observed noisy image by Ψ, and the extra 
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noise by n. For modeling and assessing various 

denoising techniques n ~ N(0,σ
2
), or additional zero-

mean Gaussian white noise, is typically used[11]. 

Now we can succinctly summarize the task of image 

denoising. We'd like to recover the clear image from a 

noisy image y. The reconstructed image is designated 

as x
c
, with noise assumed to be n ~ N(0,σ

2
). 

Peak Signal to Noise Rate and Structure Similarity 

Index Measurement are two exemplary methods to 

assess a denoising method's effectiveness 

quantitatively. Visual quality comparisons across a 

group of photos are required even when quantitative 

measurements can't always accurately reflect the 

visual quality. For evaluating a denoising approach, 

edges and textures must be preserved in addition to 

the noise reduction effect[11]. 

 

B. Existing Methods 

There are two existing denoising methods 

namely: Local and non-local denoising methods. 

Local techniques use the pixels in a pixel's immediate 

vicinity to denoise it. Frequency domain and spatial 

domain techniques are examples of the traditional 

method[11]. 

 

i. Spartial domain Method 

Denoising was initially done in the spatial 

domain using techniques including neighborhood 

filters, total variation, PDE-based algorithms, and 

classic filters. These quick techniques tend to blur 

edges because they only use nearby neighbors to 

block out noise. 

A typical isotropic filter is a gaussian filter. It 

calculates x
c
 as x

c
 = Gh* Y, where Gh is an established 

NxN template. Averaging uses fixed weights that take 

into account no local structural variation. As a result, 

noise is removed by dramatically blurring edges. The 

Wiener filter is data-driven, in contrast to the 

Gaussian filter [12]. It produces an image x that is 

consistent with the minimization of the MSE (Mean 

Squared Error) between the estimated image and the 

original picture, i.e., x
c
 = minx MSE = minxE (x

c
 - x))

2
. 

The Wiener filter is adaptive since it is data-driven. 

The generalized Kalman filter for unstable signals is 

the Wiener filter[13]. 

An anisotropic diffusion model was proposed 

by Perona and Malik [14] This method is based on a 

partial differential equation (PDE). As can be seen, it 

adapts the diffusion speed in a pixel by the gradient's 

strength. Diffusion is thought to be isotropic in flat 

zones, however, it is primarily done along with 

tangent directions in edges or textural zones. Edges 

and textures can be kept while eliminating noise in flat 

zones. Another often used denoising technique is the 

curvature motion model. The key benefit of curvature 

motion is that it preserves edge information for 

contrast-invariant images[15]. 

 
Figure 1 Anisotropic diffusion model was proposed by Perona and Malik 

 

Rudin and Osher's proposal for total variation 

integrates functional and attribute denoising with 

regularization into a general optimization 

framework[16]. Although it offers a crucial 

framework for picture denoising, it is too rigid for 

realistic images and frequently produces too smoothed 

output. Then, many researchers suggest modified 

forms of total variation[17]. 
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ii. Transform domain Method 

 The performance characteristics of 

imagesignal information and noise are different in the 

transform domain, which is an observation used by 

transform domain algorithms. 

Some algorithms for picture denoising are 

presented and are based on the wavelet transform, a 

potent tool for image processing. Four categories can 

be used to group these techniques. It is first suggested 

how to extend the Wiener filter into the wavelet 

domain.[18], [19]. When applying the wavelet 

transform on a given noisy image, coefficients below 

a certain threshold are viewed as useful, while 

coefficients above the threshold are viewed as noisy. 

There are two methods for dealing with these 

coefficients: hard thresholding and soft thresholding. 

Some approaches, such as SURE-based, Bayes-based, 

cross validation-based approaches, and others [20], 

[21], calculate an adaptive threshold rather than adopt 

an experimentally pre-selected threshold. Third, 

wavelet coefficients, including deterministic and 

statistical models, are thought to suit a certain 

distribution model. For the following purposes, non-

orthogonal wavelet transforms are used for denoising.  

 

 
Figure 2Image de-noising using fuzzy and wiener filter in the wavelet domain 

 

Data Adaptive Transformation methods such 

as ICA and PCA were used on provided noisy images. 

ICA (Independent Component Analysis) and PCA 

(Principal Component Analysis) are used as transform 

techniques[22]. The assumptions regarding the 

difference between signal and noise still hold since 

they are data adaptive. 

 

iii. Sparse Representation Method 

The origins of sparse representation can be 

found in compressive sensing[23], [24]. A patch can 

be sparsely represented, according to the theory of 

sparse representation, by a linear combination of 

atoms in a redundant dictionary. Based on the sparse 

representation, Elad et al. presentedK-singular value 

decomposition (K-SVD)[25]. A natural picture 

dataset, the noisy image itself, or a predetermined 

transform like the discrete cosine transform (DCT) or 

wavelet transform can be used to train the vocabulary. 

Because it doesn't impose any smooth assumptions on 

the resulting image, the sparse representation-based 

method performs substantially better than earlier local 

methods. However, the borders are still fuzzy. 

Additionally suggested for maintaining details is 

improved K-SVD. 

 

 
Figure 3 Dictionary algorithm (left) and K-SVD algorithm (right) 

 

Dictionary and sparse codes are typically 

updated iteratively. The first model has NP-hardness. 

The K-SVD and Method of Optimal Direction (MOD) 

dictionary updating algorithms are frequently used to 

effectively solve it [26]. The greedy algorithm and l1 

norm convex relaxation are two efficient techniques 

for solving sparse codes. There are several greedy 

algorithms, such as Matching pursuit, Orthogonal 

Matching Pursuit, Thresholding method, and Basis 

Pursuit andIteratively Reweighted Least Squares can 

solve the Li problem. 
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iv. Non-Local Scheme induced methods 

Block Matching 3-D (BM3D) is a transform 

domain two-stage non-locally collaborative filter [27]. 

In each stage, it initially creates 3-D groups after 

collecting related patches by block matching for each 

patch in the image. Second, a wavelet or other 

transform is applied to each group to create the 

transform domain. Thirdly, a Wiener filter or hard-

thresholding is applied to the coefficients. After all 

recovered patches have been aggregated and the new 

coefficients have been translated back into the picture 

region, the entire image is estimated. A better version 

of BM3D is BM3D-SAPCA[28]. Particularly at low 

noise levels, they work extremely well. The visual 

quality of the recovered photos, however, is not great 

due to high noise levels. Particularly in flat locations, 

artifacts are introduced. 

 

 
Figure 4Adaptive Edge-guided Block-matching and 3D filtering (BM3D) Image Denoising Algorithm 

 

Nonlocal self-similarity and sparse coding 

are combined into a single framework by LSSC 

(Learned Simultaneous Sparse Coding) [29]. On the 

codes of the collection of related patches, a grouped-

Sparsity regularizes is imposed. Another effective 

technique that makes use of the nonlocal scheme and 

sparse representation is NCSR (Non-locally 

Centralized Sparse Representation)[30]. In contrast to 

LSSC, NCSR does not mandate that non-zero codes 

be placed in the same order inside a group. It 

encourages each patch to focus on the weighted 

average of the codes of other patches that are 

comparable to it. Even with high noise levels, it 

performs well, however, texture-redundant images 

will suffer from too much detail loss. The 

development of new denoising techniques is focused 

on edge restoration and texture preservation. 

 

v. Deep Learning Method 

The groundbreaking field of deep learning in 

image denoising is receiving a lot of attention. Several 

deep learning approaches are employed for the 

denoising process, however, those that deal with 

picture denoising differ in their subsequent steps. 

Tian,et al. [31]give a succinct introduction of deep 

learning approaches (2020). In theirresearch, more 

than 200 papers are evaluated for their contributions to 

the field of picture de-noising. The following is a 

summary of their major contributions: 

 A demonstration of how deep learning techniques 

in practice affect image de-noising 

 A summary of the deep learning techniques' 

responses to various noises  

 Quantitative and qualitative evaluations of the 

effectiveness of deep learning's noise removal 

techniques. 

  Specifying possible issues and future possibilities 

for deep learning in the area of image denoising 

 

Most machine learning algorithms and deep 

learning techniques are built on top of neural 

networks. Neurons, input X, activation function f, 

weights, and biases b make up the majority of neural 

networks. A deep neural network is one with more 

layers than three. To get the desired results, artificial 

neural networks must be implemented carefully and 

with a lot of manual parameters. Deep convolutional 

neural networks (CNNs) were proposed as a 

result[32]. 

Due to their deep design and adaptable 

learning capabilities, convolutional neural networks 

have lately been adopted as the preferred method for 

picture denoising. Direct removal of SPN from the 

images is possible using Deep CNN[33]. They 

directly eliminate noise from images using CNNs, or 

convolutional neural networks. To eliminate salt and 

pepper noise from images, they used a multilayer 

CNN framework with padding, batch normalization, 

and rectified linear units. Three sets of photos were 

created: a training set, a validation set, and a test set. 

They discovered in their research that the model was 

capable of eradicating salt and pepper noise from a 

variety of photos. 

It was also discovered that their architecture 

could only function well on photos having a lot of 

interference pixels. As a result, their use was 

broadened for the elimination of salt and pepper noise 

and led to effective outcomes. Deep CNNs have 

undoubtedly received a lot of attention, but they are 

not without drawbacks: (1) It is highly challenging to 

train a deep CNN for denoising, and (2) the majority 

of deep CNNs experience performance saturation[34] 
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Figure 5 Convolutional Neural Network 

 

Image denoising research is still in great 

demand due to its complexity and higher 

requirements. In terms of performance enhancement 

and speed acceleration, we suggest numerous research 

axes. The majority of sparsity-based models can 

effectively eliminate noise, but they struggle to 

maintain edges. On the one hand, it is important to 

continue researching the characteristics of edges and 

textures in noisy photos to maintain them well. For 

instance, denoising can be performed using models of 

natural image edges. On the other hand, non-local 

similarity measurement difficulty needs to be lowered 

to make non-local approaches more usable. 

 

III. METHODOLOGY 
To better understand algorithms at their core, 

several algorithms are compared in this study. It also 

analyzes research employing various algorithms, 

including Gaussian smoothing, Isotropic linear 

diffusion smoothing, and nonlinear isotropic diffusion 

smoothing.In this section, we discuss the methods in 

detail 

 

A. Gaussian Smoothing 

A 2-D convolution operator called the 

Gaussian smoothing operator is used to 'blur' images 

and eliminate noise and detail. It is comparable to the 

mean filter in this regard, but it makes use of a 

different kernel that simulates a Gaussian (or "bell-

shaped") hump. The specific characteristics of this 

kernel are described below. 

G x =  
1

 2πσ
e
−

x2

2σ2 (2) 

 

where σis the distribution's standard deviation. 

Additionally, we presupposed that the distribution's 

mean would be zero, centering it on the line x=0. 

Figure 6 shows the distribution in detail. 

 
Figure 61-D Gaussian distribution with a mean of 0 and a σ value of 1 

 

A circularly symmetric Gaussian in two dimensions (2D) has the shape: 

 

G x, y =  
1

 2πσ
e
−

x2+y 2

2σ2                                                 (3) 
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Figure 7 displays this distribution. 

 
Figure 7Mean (0, 0) and σ=1 in a two-dimensional Gaussian distribution 

 

Convolution is used to accomplish the goal 

of Gaussian smoothing, which is to employ this 2-D 

distribution as a "point-spread" function. Before we 

can conduct the convolution, we must create a 

discrete approximation of the Gaussian function 

because the image is stored as a collection of discrete 

pixels. The Gaussian distribution is practically zero 

beyond around three standard deviations from the 

mean in practice, which allows us to truncate the 

convolution kernel at this point. In theory, the 

Gaussian distribution is non-zero everywhere, 

necessitating an arbitrarily large convolution kernel. 

An appropriate integer-valued convolution kernel that 

closely resembles a Gaussian with an σof 1.0 is 

shown in Figure 8. It is not immediately clear how to 

choose the mask's values to come close to a Gaussian. 

 One might use the Gaussian value at a 

pixel's center in the mask, but this is inaccurate 

because the Gaussian value varies nonlinearly 

throughout the pixel. Over the entire pixel, we 

integrated the Gaussian value (by summing the 

Gaussian at 0.001 increments). The array was 

rescaled so that the corners have the value 1, but the 

integrals are not integers. The 273 represents the total 

of all the values in the mask. 

 
Figure 8Gaussian function discrete approximation with σ=1.0 

 

Once a suitable kernel has been determined, 

typical convolution techniques can be used to achieve 

the Gaussian smoothing. Since the equation for the 2-

D isotropic Gaussian presented above can be divided 

into its x and y components, the convolution can be 

completed pretty quickly. To execute the 2-D 

convolution, one 1-D Gaussian in the x-direction 

must first be convolved, followed by another 1-D 

Gaussian in the y-direction. Convoluting an image 

with a smaller Gaussian value numerous times is 

another method for computing a Gaussian smoothing 

with a high standard deviation. Even though this 

requires complicated computing, it may still be useful 

if a hardware pipeline is used for processing. 
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Hence, we Perform Gaussian smoothing on the input 

noisy "office" image by setting the kernel size 

parameter to {0:5; 1; 2; 5; 10; 50}. The result of this 

computation is shown below: 

 

Table 1 Gaussian Smoothing result using different kernel parameter size 

 

  
 

σ=0.5 σ=1 σ=2 

   

σ=5 σ=10 σ=50 

   

 

The Gaussian distribution's variance, which 

establishes the amount of the blurring effect 

surrounding a pixel, is controlled by the value of σ. 

We experimented with sigma values ranging from 0.5 

to 50 and found that as sigma increases, the amount 

of high-frequency information surrounding a pixel 

decreases. A larger kernel will blur the image more 

than a smaller kernel since a larger kernel has more 

values averaged into it. 

Gaussian blurring has the secondary effect 

of denoising. The generated image may be helpful 

with little information loss if you choose tiny kernel 

sizes. However, information loss due to blurring may 

occur for large kernel sizes. Consequently, if edge 

preservation or texture information is important, 

Gaussian is typically not recommended for denoising. 

As seen in = 50, increasing the standard 

deviation considerably attenuates high-frequency 

features (such as edges) while continuing to diminish 

or blur the intensity of the noise. Compared to a mean 

filter of comparable size, a gaussian filter offers 

softer smoothing and better maintains edges. 

 

Denoising by Gaussian kernel is also called Gaussian 

smoothing because it is the result of blurring an 

image by a Gaussian function.  

 

 

B. Isotropic Linear Diffusion Smoothing 

The equation below describes the linear isotropic 

diffusion process: 

)   (4) 

 

where I(x,y) is the initial noisy picture, 

u(x,y,t) is the image recovered after a diffusion period 

t, and d is a scalar constant diffusivity. Keep in mind 

that the evolving intensity distribution u(x,y,t) here 

corresponds to the evolving concentration distribution 

c. (x,y,t).  

Isotropic diffusion is also known as a method 

for lowering picture noise without significantly 

altering the image's content. These elements often 

include edges, lines, and other characteristics crucial 

to the interpretation of the image. An image develops 

a parameterized family of gradually more and more 

blurred images based on a diffusion process in 

anisotropic diffusion, which is similar to the process 

that forms a scale space. Every image produced by 

this family is the result of convolution in the image 

with a 2D isotropic Gaussian filter, whose width rises 

as the parameter value does. The initial image is 

transformed linearly and spatially invariantly by the 

diffusion process. 

This diffusion process is generalized by 

isotropic diffusion, which creates a family of 

parameterized images, each of which combines the 

original image with a filter that is dependent on the 

local content of the original image. Anisotropic 

diffusion is hence a non-linear and spatially variable 

change of the initial image.Hence, we Perform 

Isotropic Linear diffusion smoothing on the input 

noisy "office" image by setting the diffusion time 
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parameter to {1; 5; 10; 30; 100}. The result of this computation is shown below 

 

Table 2Isotropic linear diffusion smoothing with diffusion time t at a different point 

 

   
t=1 t=5 t=10 

 
 

 

t=30 t=100  

 

From table 2 it can be observed that the input 

image becomes less noisy and smoother as the 

diffusion time increases. The effect of increasing 

diffusion time t on the input image is observed as t 

increases it was found that the amount of high-

frequency information surrounding a pixel 

decreases.Dirichlet boundary conditions should be 

used in this situation.The Dirichlet boundary condition 

is a sort of boundary condition used in the study of 

differential equations in mathematics. When applied 

to an ordinary or partial differential equation, it 

specifies the values that a solution must-have 

throughout the domain's perimeter. 

For a partial differential equation, for instance, 

∇2
y + y  = 0                                                      (6) 

where ∇2
 denotes the Laplace operator, the Dirichlet 

boundary conditions on a domain Ω ⊂ R
n
 take the 

form 

y(x) = f(x) v x ε∂Ω.   (7) 

where f is a known function defined on the 

boundary ∂Ω. 

 

The diffusion coefficient establishes how 

long a solute takes to diffuse across a specific distance 

in a medium. D has the area/time units, which are 

commonly cm
2
/s. Each solute's value is different; 

hence it must be calculated empirically. 

As the diffusion time increases the images 

get blurry and lose their edge. That is edge is not 

preserved as the diffusion time increases. Solving the 

diffusion PDE in equation (4) using d = {1; 5; 10} 

andcomparing the output images at t = 10.  We arrive 

at the solution result below: 

At t = 1 

   

d=1  d=5 d=10 

 

At t =10 

 

https://en.wikipedia.org/wiki/Laplace_operator
https://en.wikipedia.org/wiki/Function_(mathematics)
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d=1 d=5 d=10 

 

Both at t=1 and t=10, the input image at d =1 was denoised however as the value of d increased, it can be 

observed that the input image became very noisy and less smother. It can be      proved that a unique solution 

exists for the PDE in equation (4) which is given by: 

 

                  (5) 

  (2) 

 

where G ̸2π(x,y) is the Gaussian kernel. This proves that performing isotropic linear diffusion for a time t with d = 

1 is exactly equivalent to performing Gaussian smoothing with a σ = SQRT((2t)). We verify this fact using the 

noisy “office” image. For instance, when t=50 and d=1 it means σ = 10. 

 

 

 

 

 

 

 
t=50  σ=10 

Figure 9 Proof of equation (5) 

 

From figure 9 it can be concluded that performing 

isotropic linear diffusion for a time t with d = 1 is 

exactly equivalent to performing Gaussian smoothing 

with a σ = SQRT((2t)). 

 

C. Non-Linear Isotropic Diffusion Smoothing 

Partial Differential equations are the 

foundation of an entire area in image processing and 

computer vision (PDEs). Smoothing and picture 

restoration may be the key applications of PDE-based 

techniques in this field. Convoluting an image with a 

Gaussian kernel is a common technique for 

controlling linear diffusion to smooth an image. 

Isotropic Non-Linear Diffusion strengthens 

outlines in photos and reduces noise. As object 

boundaries are reached, the diffusion coefficient 

locally adapts and disappears. The enhancement of 

object outlines and effective noise reduction 

 Perona and Malik created the original version 

of NLDF (1987). It has several benefits: 

 While little to no smoothing happens across 

image objects, noise is locally reduced in regions 

defined by object borders. 

 Local edges are improved because borders 

and other discontinuities are magnified. 

From a mathematical perspective, one can 

approach the issue as a diffusion process, where the 

diffusion coefficient is localized so that it ceases as 

soon as an object boundary is reached. 

If we continue to use isotropic diffusion, we can only 

control the rate of diffusion; the direction of the 

diffusion is unaffected (thus we could truly think 

about this in 1D). Where the image is changing 

quickly, which is close to edge-like objects, less 

diffusion makes sense. This is possible with: 

 

                                             (8) 

To show that D is a scalar function of picture location, 

we have written it here as g(x). In other words, g(x) is 

a diffusion that varies spatially. We obtain a linear 

PDE if g(x) only depends on the original image 

because in that case, it is effectively constant. A 

function that gets smaller with k∇fk would be a 

logical choice. Useful examples include: 
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                               (9) 

Where constant λ >0. Hence these decrease from 1 to 

0 as the value for k∇fk grows. When k∇fk = λ, and  

 

.                                                                 (10) 

 

 

As was already established, this results in 

artifacts because a little structure continues to affect 

the image even after it has vanished. It also seems 

unpleasant that, even after some smoothing, one point 

with the same k∇fk will always undergo the same 

degree of smoothing while the other still has a high 

derivative. A ramp edge with extra noise wiggles 

could cause this. 

Therefore, rather than relying on the initial image, we 

make g depend on the current, partially smoothed 

image.  

                                 (11) 

This means that as we smooth, the degree of 

smoothing at each place is modulated by the gradient's 

current magnitude. 

 For denoising in this research, we take into 

account a non-linear isotropic diffusion process on an 

image domain. Following is a description of the non-

linear isotropic diffusion process: 

)   (12) 

 Hence, we resolve equation (12) diffusion 

PDE. The noisy "office" image represents the starting 

situation. We, therefore, compute the results of the 

diffusion time t when t = {5; 10; 30; 100} in the form 

of photographs. Using λ = 0:5.  

 

Table 3 Nonlinear Isotropic diffusion smoothing with diffusion time t at a different point 

   
t=1 t=5 t=10 

  

 

t=30 t=100  

 

Table 3 result indicates a noise reduction in 

the processed input image. As the diffusion time 

increases the noise reduces while the contours in the 

image are enhanced. While there is little to no 

smoothing between image objects, noise is locally 

smoothed "inside" regions defined by object borders. 

Since borders and other discontinuities are amplified, 

local edges are strengthened. 

Edge-preserving diffusion is non-linear 

diffusion with a diffusivity similar to the Perona-

Malik diffusivity. This is because the Perona-Malik 

diffusivity is low when there are edges present, or 

when ∇u is large D(x,y)  is low. In this work, we 

Calculate the diffusivity D(x; y) on the office image 

that has no noise for the case where λ = 0:5, and 

display the diffusivity as a grayscale image. The 

outcome of this experiment is shown in table 4. 
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Table 4 Nonlinear Isotropic diffusion smoothing with diffusion time t at a different point on a noiseless  

office image 

   
t=1 t=5 t=10 

  

 

t=30 t=100  

 

From the above images, it can be deduced 

that smoothing worked on the input image. The image 

output was smoothened and there is a strong 

indication of a strengthened edge.The edge strength of 

the present location, which depends on the differential 

structure of the image, is well captured by the 

gradient's length. This dependence makes the 

diffusion process nonlinear. 

The edges obtained from non-linear isotropic 

diffusion smoothing in Tables 3 and 4 are well 

preserved compared to the edges in Isotropic Linear 

diffusion smoothing. This is because local edges are 

enhanced since discontinuities, such as boundaries, are 

amplified in non-linear isotropic diffusion smoothing 

Using λ = {0:5; 1; 2; 5;10} to solve the diffusion PDE 

in equation (12) and comparing the output images at t 

= 10. We have in table 5 and 6. 

 

Table 5Non-Linear Isotropic Diffusion Smoothing at t=1 

   
λ=0.5 λ =1 λ =2 

 
 

 

λ =5 λ =10  

 

Table 6Non-Linear Isotropic Diffusion Smoothing at t=10 

   
λ=0.5 λ =1 λ =2 
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λ =5 λ =10  

 

Compared to table 6, the output image in 

table 5 has preserved edges. λreduced noise and 

smoothened the output image in table 5 than in table 

6. Table 5 images and λ = 5 and 10 increased the noise 

in the images. The increment in λ value in table 6 

distorted the out image when λ = 2,5 and 10. Hence λ 

has no significant effect on noise reduction at t = 10. 

 

DISCUSSION OF RESULTS 
In this study, we discussed a few existing 

algorithms from two different categories of picture 

denoising techniques (local and nonlocal ones). Local 

approaches, as previously discussed, are quick but 

frequently result in blurring, particularly for edges and 

texture. Although slow, non-local approaches can 

produce results that are appealing to the eye. Recently, 

two effective and promising strategies are sparse 

representation and low rank. However, for this paper, 

our focus was on the comparison of Isotropic linear 

diffusion, Nonlinear Isotropic diffusion, and the 

Gaussian smoothing Algorithm. 

Gaussian blurring has the secondary effect of 

denoising. The generated image may be helpful with 

little information loss if you choose tiny kernel sizes. 

However, information loss due to blurring may occur 

for large kernel sizes. Consequently, if edge 

preservation or texture information is important, 

Gaussian is typically not recommended for denoising. 

Isotropic Non-Linear Diffusion strengthens 

outlines in photos and reduces noise. As object 

boundaries are reached, the diffusion coefficient 

locally adapts and disappears. The enhancement of 

object outlines and effective noise reduction. The 

research results prove nonlinear isotropic diffusion 

smoothing performs optimally in terms of edge 

preservation and Image denoising.From figure 9 it can 

be concluded that performing isotropic linear diffusion 

for a time t with d = 1 is exactly equivalent to 

performing Gaussian smoothing with a σ = 

SQRT((2t)). 

The edges obtained from non-linear isotropic 

diffusion smoothing in Tables 3 and 4 are well 

preserved compared to the edges in Isotropic Linear 

diffusion smoothing. This is because local edges are 

enhanced since discontinuities, such as boundaries, are 

amplified in non-linear isotropic diffusion smoothing.  

TARGET AUDIENCE 

This is research is relevant in the field of 

image processing. It solves problems like gap 

completion in biometric (Fingerprint) systems, 

medical imaging, digital forensics, computer-aided 

quality aided control, and other areas where image 

processing is required. The paper can be published on 

research gate, Springer, science direct, and even the 

IEEE (Institute of Electrical and Electronics 

Engineers) journal platform. 
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